Q1.

Question	Expected Answers	Marks		
5 (a) (i)	U - phosphate / PO ₄ ; R phosphoric W - deoxyribose; R pentose			
	X - cytosine; R nitrogenous base / p	pyrimidine / C 3		
(ii)	Z - hydrogen; R H	1		
(b)	Assume answer is about polypeptid A comparison is not required. Information of the either polypeptide or DNA features. Do not penalise if points are not consentence. Mark all points on line.	rmation given below is for a. A ideas from either column. prresponding on one line /		
	polypeptide	DNA		
	amino acids	nucleotides;		
	one / single strand / chain	two / double strand / chains ;		
	peptide bonds R between peptides / polypeptides	phosphodiester;		
	20 monomers / sub units A > 4 monomers / sub units	only 4 monomers / sub units ; R 4 bases		
	no phosphate / PO₄	has phosphate / PO ₄ ;		
	2º / 3º structure	double helix; 3 max		

Q2.

Question E		Expected Answers						
1	(a)	W	W cytosine;					
		X deoxyribose;						
		Y nucleotide (triphosphate);						
	(b)	base	pairing/A-T and C-G; A purine - pyrimidine					
		ref to complementary/explained with ref to H bonds; R complementary in wrong context						
		(free) nucleotides pair with both, strands/each strand/polynucleotides/sides;						
		both strands act as templates;						
		to produce two DNA molecules that are identical to one another:						

(c) (all nuclei/cells) are genetically identical; A genetic stability, same genetic information, exact genetic material, genetic material does not vary, same genotype;

no mutation;

any consequence of mutation;

e.g. cells not recognised, cells divide uncontrollably, substitution of 1 amino acid results in disease e.g. sickle cell anaemia, enzyme's active site altered, forms different protein with different function.

[max 2]

[Total: 8]

Q3.

3 (a) one mark per row

statement	protein	DNA	messenger RNA	cellulose
hydrogen bonds stabilise the molecule	✓	✓	х	✓ ;
glucose is the subunit molecule	x	x	х	✓ ;
subunits are joined by peptide bonds	~	x	х	x ;
may be hydrolysed to amino acids	✓	x	х	x ;
contains uracil	x	x	~	x ;

(b) CAG; [1]

(c) tRNA, combines with amino acid / carries amino acid to ribosome; idea of specificity; e.g. each type of tRNA is specific to an amino acid anticodon matches amino acid idea; example from Fig. 3.1; codon on messenger RNA pairs with anticodon on tRNA; example from Fig. 3.1; two sites on ribosome;

further detail; e.g. P and A site (and E)

leave ribosome after amino acid joins polypeptide;

continually reused;

[max 5]

Q4.

4	(a)	(i)	A B C	transcription; tRNA / transfer RNA; ribosome; A subunit of ribosome / ribosomal subunit treat 70S / 80S or small / large as neutral anticodon;	[4]
Q5.					
5	(a)	inte	mpha	ase / S phase / synthesis phase ; R G1/G2 unqualified by interphase	[1]
	(b)	(i)	hyd	<u>Irogen</u> ;	[1]
		(ii)	M =	adenine and O = cytosine;	[1]
	(c)		A d v DN stra	rand, of DNA acts as a template (for the synthesis of a complementary strand) lescribed in terms of base pairing NA (molecule) has one, old / parental / original, strand and one, new / d and; nalf old and half new' unless clearly referring to two strands	
	(d)	(err (ma (ma ide ref.	ora A a ay lea a tha to c con her c	are) mutations / named type of mutation; if corrected there are no mutations ad to) production of altered proteins, so, impaired / loss, of function; altered amino acid in, protein / primary structure ad to) different antigens, so cells are rejected (by immune system); at cells cannot function together / impaired coordination; ancerous cells / cancer(s) / tumours / sickle cell anaemia or other named mondition; detail; uncontrolled, division / mitosis / cell replication / cell growth lack of contact inhibition / no apoptosis or described / (proto)oncogene(s)	[2 max]
				П	otal: 7]
Q6.					
3	(a)	E -	ribo	cil; nine; se; I pentose / sugar ssphate; A phosphate	[4]

(b) answers must be in pairs

mRNA	DNA
ribose	deoxyribose;
differences between pentoses / sugar	may be described in terms of OH on C2
uracil / no thymine	thymine / no uracil;
single, polynucleotide / strand / chain	two, polynucleotides / chains / strands ; A double
no hydrogen bonds	hydrogen bonding;
not a helix / straight chain	(double) helix;
ratio of A+G to C+T varies / AW	ratio of A+G to C+T = 1 / AW;
no base pairing (within molecule)	base pairing;
base pairing A-U with, tRNA / anticodon	base pairing is A-T
shorter	longer;
found in cytoplasm / leaves nucleus	found in nucleus ;
attached to ribosome(s)	not attached to ribosome(s);
short-lived	long-lived;
transfer of information (to ribosome)	information storage / AW;
codes for one polypeptide	codes for more than one polypeptide;
produced by transcription	produced by (semi-conservative) replication

[max 3]

- (c) 1 translation; R if transcription given as well, unless in correct context
 A use of, nucleotide / base, sequence, to make, amino acid chain / polypeptide / protein
 I protein / polypeptide, synthesis
 - 2 moves towards / combines with, ribosome;
 - 3 ref to small and/or large sub-units; I small / large ribosome
 - 4 codon(s); only accept in correct context
 - 5 transfer / t, RNA, bringing, amino acid(s), to mRNA / ribosome;
 - 6 anticodon(s); only accept in correct context
 - 7 (complementary) base pairing;
 - 8 any e.g. of codon:anticodon base pairing; need six bases
 - 9 ref to polyribosome(s) / used by many ribosomes;
 - 10 (mRNA short-lived) ref to production of protein for short period of time; [max 4]

[Total: 11]

Q7.

2 (a) one mark per complete correct row

DNA	RNA
two, polynucleotides / chains / strands A double	single, polynucleotide / strand / chain
(double) helix	not a helix / straight chain;
deoxyribose	ribose differences between pentoses / sugar may be described in terms of OH on C ₂
thymine / no uracil	uracil / no thymine
hydrogen bonding (between all bases)	hydrogen bonds between some bases A no hydrogen bonds
ratio of A+G to C+T = 1 / AW	ratio of A+G to C+T varies
longer	shorter
one type	more than one type / three types / mRNA + tRNA + rRNA

[max 3]

(b) (GCG) CGC; (ACA) UGU; [2]

- (c) 714 ;; A 717 / 720
 if, no / incorrect, answer given, award one mark for correct working
- (d) 1 (tRNA) carries amino acid to ribosome;
 - 2 ref. to specificity of amino acid carried; A role in ensuring correct primary structure
 - 3 ref. anticodon (on tRNA): codon (on mRNA) binding;
 - 4 ref. complementary / base pairing; A A-U, C-G
 - 5 ref to tRNA binding sites within ribosome;
 - 6 two tRNAs bound to, mRNA / ribosome, at same time;
 - 7 amino acids held close to each other / AW;
 - 8 (for) peptide bond formation ;
 - 9 (tRNA) can be reused / binds another amino acid;

[max 4]

[2]

[Total: 11]

Q8.

		lines must go between O-H, N-H as follows	
		two lines between A and T H — O and N — H;	
		three lines between C and G H — O and N — H and O — H;	[2]
	(ii)	 hydrogen bonds hold (two), polynucleotides / strands / chains, together; A hold, (complementary) nucleotides / base pairs, together A ora e.g. prevents, unwinding / strand separation (many hydrogen bonds) give stability / DNA is stable molecule / DNA is long lastin AW; ignore ref. to strength can be broken for, transcription / replication; ref. to (double) helix; 	ıg / [2]
(b)	1	(named) base / nucleotide, pairing;	
	2	purine – pyrimidine ;	
	3 4	percentage of A = percentage of T; A very similar	
	5	percentage of C = percentage of G; A very similar data quote in support; [max	, 31
	-		
(c) (i)	ide	a that	
	per	reentages of, A and T / C and G, are not the same / three percentages are similar;	[1]
(ii)	sin	gle-stranded DNA / not double-stranded / not a double helix;	
(11)		nay be other bases ;	[1]
		[Total	: 9]
Q9.			

6 (a) (i) hydrogen bonds drawn onto Fig. 6.1

6

4	(a) (i)	DNA because RNA (has uracil) does not have thymine;	[1]
	(ii)	phosphodiester;	[1]
	(iii)	deoxyribose;	[1]
	or tak ide	ses specific amino acid / activated tRNA, to ribosome ea of, adjacent / two, amino acids and codon-anticodon binding;	max 2]
	(c) ac	cept points from a diagram	
	1	loss of a water molecule / condensation reaction;	
	3	OH / O , from, carboxyl / -COOH / COO (group) of one amino acid; H / H , from, amine / NH ₂ / NH ₃ (group) of other amino acid; allow one mark for ref. to involvement of carboxyl and amine group	
	4	(peptide bond) links C-N;	[3]
		По	tal: 8]
Q10.			
4	(a) 1 2 3 4 5 6 7	many hydrogen bonds so, gives stability / strands not easily separated / long lasting AW (individual) hydrogen bonds (more) easily broken (than covalent bonds); A hydrogen bonds weak / hydrogen bonds can be broken consequence (so strands can be separated) for (DNA) replication; A description (so strands can be separated) for (DNA) transcription; A description hydrogen bonds only form between, specific bases / named base pairs, so, few mistakes / faithful replication / AW;	nax 4]
		= transcription = translation;	[1]

(c) (i) sequence will not (spontaneously) change / AW; A decreases chance of mutation (so) gene products / proteins, produced will always be functional; maintains all, genetic information / AW, throughout life of cell; same, genetic information / AW, passed on to, daughter cells / offspring; AVP; e.g. maintains size so still enclosed within nucleus [max 2]

(ii) translation / protein synthesis, will stop when mRNA breaks down; allows re-use of nucleotides (for other mRNA); ref. to control of gene expression; A prevents too much product forming ref. to control of cell activity / fast response to changing rquirements; ref. to efficiency in energy use;

[max 2]

[Total: 9]

Q11.

- 4 (a) J thymine;
 - K guanine;
 - L hydrogen bond ; ignore H/H₂ bond

[max 3]

Q12.

5 (a) three from ;;;

allow mps without naming DNA / RNA if already gained in previous point must be comparison statement per row mark first comparison per row unless one row left blank

	DNA replication	DNA transcription
1	DNA, formed / AW	mRNA / pre-mRNA (transcript) , (formed)
2	two (identical) DNA molecules formed	one mRNA molecule (formed)
3	product double-stranded DNA	product single stranded (m)RNA
4	all of DNA molecule, replicated / unwinds / involved	part of DNA molecule / gene, involved
5	both strands involved	one strand (involved) treat ref. to sense / antisense strands as neutral
6	(involves / uses) DNA polymerase	RNA polymerase
7	(free) DNA nucleotides, required / used	RNA nucleotides
8	(process involves complementary) base pairing A-T ignore C-G	(complementary) base pairing A–U
9	takes place in late interphase / S-phase / synthesis phase	takes place throughout interphase
10	important in, cell division / mitosis / meiosis	for, polypeptide / protein, synthesis

[max 3]

(b) change / alteration / AW, in sequence / order / arrangement, of, bases /nucleotides (of DNA / gene); change to give a new allele;

one additional detail; (may result in) altered, changed / non-functioning / no, polypeptide / protein ref. to changed genetic code / different codons different sequence of amino acids / different primary structure named type of mutation example e.g. HbS

[max 2]

Q13.

```
2 (a) (i) cells have machinery for protein synthesis/AW;
            A plant/animal, cells have RER
            (assumption that) cells will continue to produce protein at high rate;
            large number of/many/AW, ribosomes;
            available supply of AW, amino acids;
            ref. to presence of tRNA molecules;
            ATP available;
                                                                                            [max 2]
            ref. to easier to harvest high levels of protein;
        (ii) idea that any added mRNA, has easier access to/can reach, ribosomes/RER;
            so that the cell's own, DNA/mRNA can be accessed/AW;
            easier to, harvest/extract, protein products;
                                                                                            [max 1]
       (iii) only the desired protein is produced/AW; ora
            unwanted protein does not have to be separated from desired protein;
            idea that inefficient process if translation machinery used to produce other proteins;
            cell's proteins may, inhibit/affect/hinder/AW, process;
                                                                                            [max 1]
       (iv) ref. to ribosome function not altered;
            R ref. to prokaryotic and eukaryotic ribosomes being the same
            mechanism of translation / described, is the same in all cells :
            e.g. tRNA can respond to introduced mRNA
            all types of cells use mRNA for protein synthesis;
            mRNA only has one role:
            genetic code/codons, are the same in all cells;
            A genetic code is universal
            mRNA, contains only exons/introns removed, so translation can occur;
                                                                                            [max 2]
    (b) different, structure/rRNA, (of ribosomes);
        (ribosomes), larger/80S, in eukaryotes or smaller/70S in prokaryotes;
        (some) attached to / AW, (eternal surface of) RER in eukaryotes; ora
                                                                                           [max 2]
        A only found in cytoplasm in prokaryotes
    (c) other organelles/components, damaged or whole cell all organelles intact;
        some, ribosomes/RER, lost/damaged;
        idea that cell-free system is disorganised; ora
        fewer amino acids available; ora
        no/reduced, respiration; AW
        other, components/AW, required are, lost/at lower levels;
        organelles/components, not replaced; ora
        ref. to difficulty in creating identical conditions to cell environment;
        may be able to use cells that can replicate (hence continuous production);
        AVP;
                                                                                            [max 1]
```

Q14.

[Total: 9]

		DNA		GCA	ACG / AC	CA ;	СТТ	;			[3]
	(ii)	an e dege AVP	.g. fror enerate ; e.g.	n Table 3.1 code / des	; cription e.	g. 64 pc	ossible t	triplets t	acid ; A codon for 20 amino acids ; cleotides at the begi	inning	ns 2 max]
Q15.											
(c)	(i)	AUG	3;								[1]
	(ii)	1 2 3 4 5 6 7 8 9	tertiar forma quate glycos R additio A remov polype AVP;	sylation / for hydrocarbo on of, non-p	description description of the control of the contr	on / fokes); R if cription of f glycon rtion(s) opper / C ids; R of or more e to wat	ding / co peptide (e.g. as proteins / prosth Cu / ma one am e pieces er mole	omplex e bond sembly / addit etic gro gnesiur ino acid s; ecules a	3D shape; in list of polypeptides); tion of carbohydrate oup(s) / named exam / Mg / AW d		sugar(s) ; [max 2]
Q16.											
ı	(b)	di both a	fferent ire 1. v	and sevent al-2.his-3.leu plutamic acid	ı-4.thr-5.pr	ro7.g	lu; <i>tak</i> e	e from a		sition 6 is	[3]
Q17.											
(c)	со	ndens	ation /	polymerisati	on / esteri	fication	;				[1]

(c) (i) mRNA CGU ; UGC/UGU GAA

(d)

	replication	transcription
	DNA polymerase	RNA polymerase ;
	(free activated) DNA nucleotides	RNA nucleotides ;
	(complementary) base pairing A-T	base pairing A-U;
	both strands, involved / act as template / AW	one strand involved;
	all / AW, the DNA molecule, is copied / unzips / AW	part / gene(s), copied;
	(two) DNA molecules produced A DNA produced	messenger RNA / mRNA / pre-mRNA , produced ;
	molecule(s) produced are double-stranded	single-stranded molecule produced;
	occurs, in late interphase / S-phase / prior to mitosis	occurs throughout interphase / AW;
	important in, mitosis / meiosis A cell / nuclear, division	important in, protein / polypeptide, synthesis;
1	AVP; e.g. Okazaki fragments / breaking and joining (of DNA) required	mRNA produced as continuous molecule

[max 4]

Q18.

5	(a)	(i)	box drawn round one phosphate, sugar and base;	[1]
		(ii)	label P to circle; A phosphate / no label but clear a circle is intended	[1]
	(b)	1	DNA (double helix), unwinds / AW; A uncoil	
		2	hydrogen bonds between (complementary) bases broken; ignore DNA unzips	
		3	complementary, base / nucleotide, pairing; A A-T and C-G	
		4	phosphodiester bonds;	
		5	both strands used as templates; A both strands are copied	
		6	produces two identical DNA molecules; A 'DNAs'	
		7	semi-conservative / each new DNA = one 'old' and one 'new' strand;	
		8	ref to DNA polymerase ;	

backbone), ligase (formation of phosphodiester bonds)
 ref to Fig. 5.1; e.g. described dotted lines as H bonds that need to be broken look for annotations on Fig. 5.1

11 AVP; e.g. replication fork(s), replication bubble(s), antiparallel nature,
Okazaki fragments, activated nucleotides (3 phosphate groups) [max 5]

correct ref to other named enzyme; e.g. helicase (unwinds), topoisomerase (cuts

- (c) 1 tRNA carries amino acid to ribosome;
 - 2 ref to specificity of amino acid carried;
 - 3 anti-codon on tRNA complementary to codon on mRNA;

A example for complementary, e.g. AUG and UAC

- 4 ref to two sites / P(eptidyl) and A(mino-acyl) sites, of ribosome;
- 5 peptide bond is formed between amino acids; R 'polypeptide bond'
- 6 tRNA, can be re-used / collects another amino acid;

[max 3]

[Total: 10]

Q19.

- 5 (a) 1 complementary bases / base pairing, hold(s) strands together / AW;
 - 2 (because of) many hydrogen bonds;

R if between adjacent nucleotides

if mp 1 and 2 not awarded

- 1/2 hydrogen bonds hold strands together;
- 3 sugar-phosphate backbone / AW, with covalent / phosphodiester, bonds;
- 4 double helix structure protects bases;
- 5 AVP; coiling protects from, chemical / enzyme, attack

[max 2]

(b) 1 (information is) ref. (different) sequence / order of bases / nucleotides (in the polynucleotide strand);

A described in terms of sequence of bases

- 2 DNA / gene, contains / AW, information for the synthesis of a, polypeptide / protein / enzyme:
- 3 idea that (coded because) information becomes sequence of amino acids;
- 4 idea that information passed on (cell to cell / parent to offspring); [max 2]
- (c) (late) interphase / S phase / synthesis phase;

[1]

- (d) 1 <u>different</u> sequence of bases / nucleotides;
 - 2 (as a result of) mutation;
 - 3 base <u>substitution</u>;
 - 4 CTT replaced by CAT;

A GAA replaced by GUA (for mRNA codon)

5 glu(tamate) substituted by val(ine);

[max 3]

(e) 1 increasing concentration of ara-ATP decreases enzyme activity; can be comparison between 0 and 5 / 20 or between 5 and 20

A ref. to rate of DNA synthesis for enzyme activity

- 2 ara-ATP acting as an inhibitor;
- 3 substrate unable to bind with active site / fewer enzyme-substrate complexes (formed);
- 4 further detail;

for either competitive

e.g. competes with substrate for (binding to) the active site / similar, structure / shape, as substrate or complementary shape to active site

or non-competitive inhibition

e.g. binds to site other than active site / changes shape of active site

[max 3]

[Total: 11]

Q20.

5 ((a)	all 1 2 3 4 5 6	ref. to, attachment / AW, to mRNA; idea of two codon attachment, sites / space, for six bases or nucleotides; mRNA has code for sequence of amino acids (in a polypeptide); (ribosome) provides sites for attachment of two tRNA (molecules); A implied each tRNA has a specific amino acid / AW; (mRNA) codon – anticodon (tRNA), binding; A description in terms of complementary base pairing A 'matching' formation of peptide bonds (catalysed by peptidyl transferase); idea of ribosome moving along mRNA one codon at a time;	[max 4]
(b)	(i)	GGC;	[1]
	(ii	i)	CTA;	[1]
(c)	1 1 2 3 4 5 6 7		amino acid coded by codon 2 changed; idea of every subsequent codon changed; amino acids / protein sequence, up to and including codon 1 unaffected / AW ora amino acid sequence from codon 2 onwards is changed; idea of premature chain termination (if stop codon further on) / AW; idea of change in, primary / secondary / tertiary, structure of protein; idea of protein non-functional; ignore 'affect / effect' A in context of enzyme not functioning R if this point is out of context AVP; e.g. frameshift (mutation)	[max 3]
				[Total: 9]

Q21.

5 (a) (i) GTG; ACU; [3] leu; (ii) primary structure; [1] (b) 1 mutation: base substitution/T→ A in template strand of DNA/AW; transcription 3 DNA has CAC as 6th triplet; (so) mRNA has GUG as (6th) codon; allow one mark for altered mRNA codon if no marks gained for mps 3 and 4 translation different tRNA involved /tRNA specific to val and not glu; 6 anticodon on tRNA has CAC (with valine); 7 tRNA brings, incorrect amino acid/val, to ribosome; 8 further detail; e.g. incorrect amino acid incorporated into growing polypeptide chain [Total: 9] 022. (b) UAC; [1] (c) mRNA, less stable / broken down sooner / used only for a short time / does not last long / is temporary / has short (half-) life; I 'used up' tRNA is re-used (for a longer time); no ora unless correct ref. to mRNA 'shelf life' [max1] (d) 1 translation (in correct context) / genetic code used to make a sequence of amino acids / 2 attach / assemble around / moves along / AW, mRNA; A ref. to bind mRNA / mRNA 'lies within' the ribosome R mRNA enters ribosome tRNA(s) carrying amino acid(s), bind to / AW, mRNA; A provides two sites for tRNAs carrying amino acids to bind to mRNA binding / pairing / AW, between anticodon on tRNA to codon on mRNA; (catalyse) formation of peptide bond (to form polypeptide); any further detail of translation; e.g. peptidyl transferase ribosome moves along one codon at a time

15

[max 3]

start codon is AUG stop codon in context correct roles of P and A sites